
CS107 Handout 23
Spring 2008 May 5, 2008

Thread and Semaphore Examples
Handout prose by Julie Zelenski, examples written by Nick Parlante and Julie.

Semaphores
Since all threads run in the same address space, they all have access to the same data and
variables. If two threads simultaneously attempt to update a global counter variable, it
is possible for their operations to interleave in such way that the global state is not
correctly modified. Although such a case may only arise only one time out of
thousands, a concurrent program needs to coordinate the activities of multiple threads
using something more reliable that just depending on the fact that such interference is
rare. The semaphore is designed for just this purpose.

A semaphore is somewhat like an integer variable, but is special in that its operations
(increment and decrement) are guaranteed to be atomic—you cannot be halfway
through incrementing the semaphore and be interrupted and waylaid by another thread
trying to do the same thing. That means you can increment and decrement the
semaphore from multiple threads without interference. By convention, when a
semaphore is zero it is "locked" or "in use". Otherwise, positive values indicate that the
semaphore is available. A semaphore will never have a negative value.

Semaphores are also specifically designed to support an efficient waiting mechanism. If
a thread can’t proceed until some change occurs, it is undesirable for that thread to be
looping and repeatedly checking the state until it changes. In this case semaphore can be
used to represent the right of a thread to proceed. A non-zero value means the thread
should continue, zero means to hold off. When a thread attempts to decrement a
unavailable semaphore (with a zero value), it efficiently waits until another thread
increments the semaphore to signal the state change that will allow it to proceed.

Semaphores are usually provided as an ADT by a machine-specific package. As with any
ADT, you should only manipulate the variables through the interface routines—in this
case SemaphoreWait and SemaphoreSignal below. There is no single standard thread
synchronization facility, but they all look and act pretty similarly.

SemaphoreWait(Semaphore s)

If a semaphore value is positive, decrement the value otherwise suspend the thread and
block on that semaphore until it becomes positive. The thread package keeps track of
the threads that are blocked on a particular semaphore. Many packages guarantee
FIFO/queue behavior for the unblocking of threads to avoid starvation. Alternately the
threads blocked on a semaphore may be stored as a set where the thread manager is
free to choose any one. In that case, a thread could theoretically starve, but it's unlikely.

2

Historically, P is a synonym for SemaphoreWait. You see, P is the first letter in the
word prolagen which is of course a Dutch word formed from the words proberen (to try)
and verlagen (to decrease).

SemaphoreSignal(Semaphore s)

Increment the semaphore value, potentially awakening a suspended thread that is
blocked on it. If multiple threads are waiting, it is not deterministic which will be chosen.
Also there is no guarantee that any suspended thread will actually begin running
immediately when awakened. The awakened thread may just be marked or queued for
execution and will run at some later time. V historically is a synonym for
SemaphoreSignal since, of course, verhogen means "to increase" in Dutch.

No GetValue(Semaphore s) function
One special thing to note about semaphores is that there is no "SemaphoreValue"
function in the interface. You cannot look at the value directly, you can only operate on
the value through the increment and decrement operations of Signal and Wait. It isn't
really useful to retrieve the value of the semaphore since as you receive the return value
there is no guarantee it hasn't been changed in the meantime by another thread.

Semaphore use
In client code, a SemaphoreWait call is a sort of checkpoint. If the semaphore is
available (i.e. has a positive value) a thread will decrement the value and breeze right
through the call to SemaphoreWait. If the semaphore is not available, then the thread
will efficiently block at the point of the SemaphoreWait until the semaphore is available.
A call to SemaphoreWait is usually balanced by a call to SemaphoreSignal to release
the semaphore for other threads.

Binary semaphores
A binary semaphore can only be 0 or 1. Binary semaphores are most often used to
implement a lock that allows only a single thread into a critical section. The semaphore
is initially given the value 1 and when a thread approaches the critical region, it waits on
the semaphore to decrement the value and "take out" the lock, then signals the
semaphore at the end of the critical region to release the lock. Any thread arriving at the
critical region while the lock is in use will block when trying to decrement the
semaphore, because it is already at 0. When the thread inside the critical region exits, it
signals the semaphore and brings its value back up to 1. This allows the waiting thread
to now take out the lock and enter the critical section. The result is that at most one
thread can enter into the critical section and only after it leaves can another enter. This
sort of locking strategy is often used to serialize code that accesses a shared global
variable.

3

The main issues to watch with binary semaphores is ensuring they are initialized to the
proper starting state when created and making sure each thread that locks the
semaphore is careful to unlock it. You also want to try to keep the critical region as small
as possible— only exactly those statements that need to be serialized should be done
while holding the lock. If a thread holds the lock during a lot of other operations that
aren't accessing any shared data, it is unnecessary holding up all the other threads that
need to acquire that lock.

General semaphores
A general semaphore can take on any non-negative value. General semaphores are
used for "counting" tasks such as creating a critical region that allows a specified number
of threads to enter. For example, if you want at most four threads to be able to enter a
section, you could protect it with a semaphore and initialize that semaphore to four. The
first four threads will be able to decrement the semaphore and enter the region, but at
that point, the semaphore will be zero and any other threads will block outside the
critical region until one of the current threads leaves and signals the semaphore.

You can also use a general semaphore for representing the quantity of an available
resource. Let's say you need to limit the number of simultaneously open file descriptors
among multiple threads. You could initialize a general semaphore to the maximum
number of open file descriptors and each thread that wants to open a file needs to wait
on the semaphore first. If the max hasn't yet been reached, the semaphore will have a
positive value and the thread will be able to breeze right through the wait, decrement
the semaphore and thus open a file. If the max has been reached, the semaphore value
will be zero and thread will block until another thread closes a file, releasing a resource,
and incrementing the semaphore that allows others to proceed.

A general semaphore can also be used to implement a form of rendezvous between
threads, such as when Thread2 needs to know that Thread1 is done with something
before proceeding. A rendezvous semaphore is usually initialized to zero. Thread1 waits
on that semaphore (and thus immediately blocks since the value starts at zero) until
Thread2 signals the semaphore when ready. If you need to rendezvous among several
threads, you could have Thread1 wait several times, once for each of the threads that
will signal when ready. In this case, the semaphore is "counting" the number of times an
action occurred.

Global variables
You will find that concurrent programs tend to use global variables, something you may
have been trained to believe is evil in its purest form and thus will balk a bit at this kind
of design. It is characteristic of multi-threaded programs that data is made globally
visible to allow multiple threads to access it. This is appropriate for the data that is
shared and worked upon by more than one thread. Global variables tend to be the
easiest way to share data in a concurrent program. However, you inherit all the usual

4

downsides of globals—keeping track of who changes the data where is difficult, it leads
to routines that have lots of interdependencies other than what is indicated by the
parameter lists, and so on.

As an alternative, you can declare variables as local variables within a function (most
usually the main function) and then pass pointers to those variables as arguments to the
new threads. This avoids the global variables and all their attendant risks and gives you
direct control and documentation about which routines have access to these pieces of
data. The downside is longer argument lists for the functions and more complicated
variable management. You also need to be very careful here—if you are going to pass a
pointer to a stack variable from one thread's stack to an another, you need to be
absolutely positive that the original stack frame will remain valid for the entire time the
other thread is using the pointers it was given. This can be tricky! Since the main
function exists for the lifetime of the entire program, its local variables aren't at risk, but
be very wary when trying to do this with any other function's local variables.

We don't prefer one approach to the exclusion of the other and so our examples will
show a mix of styles and you are free to adopt the one that works best for you.

Binary Semaphore Example
The canonical use of a semaphore is a lock associated with some resource so that only
one thread at a time has access to the resource. In the example below, we have one
piece of global data, the number of tickets remaining to sell, that we want to coordinate
the access by multiple threads. In this case, a binary semaphore serves as a lock to
guarantee that at most one thread is examining or changing the value of the variable at
any given time.

When the program is run, it creates a certain number of threads that attempt to sell all
the available tickets. This code is written with the thread package we will be using on
the Sun workstations.

/*
 * ticketSeller.c
 * ---------------
 * A very simple example of a critical section that is protected by a
 * semaphore lock. There is a global variable numTickets which tracks the
 * number of tickets remaining to sell. We will create many threads that all
 * will attempt to sell tickets until they are all gone. However, we must
 * control access to this global variable lest we sell more tickets than
 * really exist. We have a semaphore lock that will only allow one seller
 * thread to access the numTickets variable at a time. Before attempting to
 * sell a ticket, the thread must acquire the lock by waiting on the semaphore
 * and then release the lock when through by signalling the semaphore.
 */

#include "thread_107.h"
#include <stdio.h>

5

#define NUM_TICKETS 35
#define NUM_SELLERS 4

/**
 * The ticket counter and its associated lock will be accessed
 * all threads, so made global for easy access.
 */

static int numTickets = NUM_TICKETS;
static Semaphore ticketsLock;

/**
 * Our main is creates the initial semaphore lock in an unlocked state
 * (one thread can immediately acquire it) and sets up all of
 * the ticket seller threads, and lets them run to completion. They
 * should all finish when all tickets have been sold. By running with the
 * -v flag, it will include the trace output from the thread library.
 */
void main(int argc, char **argv)
{
 int i;
 char name[32];
 bool verbose = (argc == 2 && (strcmp(argv[1], "-v") == 0));

 InitThreadPackage(verbose);

 ticketsLock = SemaphoreNew("Tickets Lock", 1);
 for (i = 0; i < NUM_SELLERS; i++) {
 sprintf(name, "Seller #%d", i); // give each thread a distinct name

ThreadNew(name, SellTickets, 0);
 }
 RunAllThreads(); // Let all threads loose

 SemaphoreFree(ticketsLock); // to be tidy, clean up
 printf("All done!\n");
}

6

/**
 * SellTickets
 * -----------
 * This is the routine forked by each of the ticket-selling threads.
 * It will loop selling tickets until there are no more tickets left
 * to sell. Before accessing the global numTickets variable,
 * it acquires the ticketsLock to ensure that our threads don't step
 * on one another and oversell on the number of tickets.
 */

static void SellTickets(void)
{
 bool done = false;

int numSoldByThisThread = 0; // local vars are unique to each thread

while (!done) {

 /**
 * imagine some code here which does something independent of

 * the other threads such as working with a customer to determine
 * which tickets they want. Simulate with a small random delay

 * to get random variations in output patterns.
 */
RandomDelay(500000, 2000000);

SemaphoreWait(ticketsLock); // ENTER CRITICAL SECTION
if (numTickets == 0) { // here is safe to access numTickets

 done = true; // a "break" here instead of done variable
// would be an error- why?

} else {
 numTickets--;

numSoldByThisThread++;
 printf("%s sold one (%d left)\n", ThreadName(), numTickets);

}
SemaphoreSignal(ticketsLock); // LEAVE CRITICAL SECTION

}

 printf("%s noticed all tickets sold! (I sold %d myself) \n",
ThreadName(), numSoldByThisThread);

}

/**
 * RandomDelay
 * -----------
 * This is used to put the current thread to sleep for a little
 * bit to simulate some activity or perhaps just to vary the
 * execution patterns of the thread scheduling. The low and high
 * limits are expressed in microseconds, the thread will sleep
 * at least the lower limit, and perhaps as high as upper limit
 * (or even more depending on the contention for the processors).
 */

static void RandomDelay(int atLeastMicrosecs, int atMostMicrosecs)
{

long choice;
 int range = atMostMicrosecs - atLeastMicrosecs;
 PROTECT(choice = random()); // protect non-re-entrancy
 ThreadSleep(atLeastMicrosecs + choice % range); // put thread to sleep
}

7

Output
epic18:/usr/class/cs107/other/thread_examples>ticketSeller
Seller #1 sold one (34 left)
Seller #0 sold one (33 left)
Seller #1 sold one (32 left)
Seller #1 sold one (31 left)
Seller #1 sold one (30 left)
Seller #1 sold one (29 left)
Seller #1 sold one (28 left)
Seller #2 sold one (27 left)
Seller #3 sold one (26 left)
Seller #2 sold one (25 left)
Seller #3 sold one (24 left)
Seller #2 sold one (23 left)
Seller #0 sold one (22 left)
Seller #1 sold one (21 left)
Seller #2 sold one (20 left)
Seller #0 sold one (19 left)
Seller #1 sold one (18 left)
Seller #1 sold one (17 left)
Seller #3 sold one (16 left)
Seller #2 sold one (15 left)
Seller #0 sold one (14 left)
Seller #0 sold one (13 left)
Seller #1 sold one (12 left)
Seller #3 sold one (11 left)
Seller #2 sold one (10 left)
Seller #0 sold one (9 left)
Seller #0 sold one (8 left)
Seller #1 sold one (7 left)
Seller #3 sold one (6 left)
Seller #2 sold one (5 left)
Seller #0 sold one (4 left)
Seller #1 sold one (3 left)
Seller #1 sold one (2 left)
Seller #1 sold one (1 left)
Seller #1 sold one (0 left)
Seller #3 noticed all tickets sold! (I sold 5 myself)
Seller #2 noticed all tickets sold! (I sold 7 myself)
Seller #1 noticed all tickets sold! (I sold 15 myself)
Seller #0 noticed all tickets sold! (I sold 8 myself)
All done!

Note that each time you run it, different output will result because the threads will not
be scheduled in exactly the same way. Maybe next time Seller 0 will sell most of the
tickets or Seller 3 will finish last. But it should always be true that exactly 35 tickets
are sold, no more, no less, and that's what our use of the semaphore lock is designed to
ensure.

8

Reader-Writer example
In this classic Reader-Writer problem, there are two threads exchanging information
through a fixed size buffer. The Writer thread fills the buffer with data whenever there's
room for more. The Reader thread reads data from the buffer and prints it. Both
threads have a situation where they should block. The writer blocks when the buffer is
full and the reader blocks when the buffer is empty. The problem is to get them to
cooperate nicely and block efficiently when necessary.

For this problem, we will use "generalized semaphores" where the value can be any non-
negative number. Zero still means "locked" and any other value means "available". The
code cannot look at the value of a generalized semaphore explicitly, you can only call
SemaphoreWait and SemaphoreSignal which in turn depend on the value.

There is a shared, fixed-size buffer. The reader reads starting at readPt and the writer
writes at writePt. No locks are required to protect these integers because only one
thread concerns itself with either. The semaphores ensure that the writer only writes at
writePt when there is space available and similarly for the reader and readPt. This
program is written using no global variables, but instead declaring the variables in main
and passing their address to the new threads.

9

/**
 * readerWriter.c
 * --------------
 * The canonical consumer-producer example. This version has just one reader
 * and just one writer (although it could be generalized to multiple readers/
 * writers) communicating information through a shared buffer. There are two
 * generalized semaphores used, one to track the num of empty buffers, another
 * to track full buffers. Each is used to count, as well as control access.
 */

#include "thread_107.h"
#include <stdio.h>

#define NUM_TOTAL_BUFFERS 5
#define DATA_LENGTH 20

/**
 * Initially, all buffers are empty, so our empty buffer semaphore starts
 * with a count equal to the total number of buffers, while our full buffer
 * semaphore begins at zero. We create two threads: one to read and one
 * to write, and then start them off running. They will finish after all
 * data has been written & read. By running with the -v flag, it will include
 * the trace output from the thread library.
 */

void main(int argc, char **argv)
{
 bool verbose = (argc == 2 && (strcmp(argv[1], "-v") == 0));

 Semaphore emptyBuffers, fullBuffers; // semaphores used as counters
 char buffers[NUM_TOTAL_BUFFERS]; // the shared buffer

 InitThreadPackage(verbose);

 emptyBuffers = SemaphoreNew("Empty Buffers", NUM_TOTAL_BUFFERS);
 fullBuffers = SemaphoreNew("Full Buffers", 0);

 ThreadNew(“Writer”, Writer, 3, buffers, emptyBuffers, fullBuffers);
 ThreadNew(“Reader”, Reader, 3, buffers, emptyBuffers, fullBuffers);
 RunAllThreads();
 SemaphoreFree(emptyBuffers);

 SemaphoreFree(fullBuffers);
 printf("All done!\n");
}

10

/**
 * Writer
 * ------
 * This is the routine forked by the Writer thread. It will loop until
 * all data is written. It prepares the data to be written, then waits
 * for an empty buffer to be available to write the data to, after which
 * it signals that a full buffer is ready.
 */

static void Writer(char buffers[],
Semaphore emptyBuffers,
Semaphore fullBuffers)

{
int i, writePt = 0;
char data;

for (i = 0; i < DATA_LENGTH; i++) {
data = PrepareData(); // go off & get data ready
SemaphoreWait(emptyBuffers); // now wait til an empty buffer avail
buffers[writePt] = data; // put data into buffer
printf("%s: buffer[%d] = %c\n", ThreadName(), writePt, data);
writePt = (writePt + 1) % NUM_TOTAL_BUFFERS;
SemaphoreSignal(fullBuffers); // announce full buffer ready

}
}

/**
 * Reader
 * ------
 * This is the routine forked by the Reader thread. It will loop until
 * all data is read. It waits until a full buffer is available and the
 * reads from it, signals that now an empty buffer is ready, and then
 * goes off and processes the data.
 */

static void Reader(char buffers[],
Semaphore emptyBuffers,
Semaphore fullBuffers)

{
int i, readPt = 0;
char data;

for (i = 0; i < DATA_LENGTH; i++) {
SemaphoreWait(fullBuffers); // wait til something to read
data = buffers[readPt]; // pull value out of buffer
printf("\t\t%s: buffer[%d] = %c\n", ThreadName(), readPt, data);
readPt = (readPt + 1) % NUM_TOTAL_BUFFERS;
SemaphoreSignal(emptyBuffers); // announce empty buffer
ProcessData(data); // now go off & process data

}
}

11

/**
 * ProcessData
 * -----------
 * This just stands in for some lengthy processing step that might be
 * required to handle the incoming data. Processing the data can be done by
 * many reader threads simultaneously since it doesn't access any global state
 */

static void ProcessData(char data)
{
 ThreadSleep(RandomInteger(0, 500)); // sleep random amount
}

/**
 * PrepareData
 * -----------
 * This just stands in for some lengthy processing step that might be
 * required to create the data. Preparing the data can be done by many writer
 * threads simultaneously since it doesn't access any global state. The data
 * value is just randomly generated in our simulation.
 */

static char PrepareData(void)
{

ThreadSleep(RandomInteger(0, 500)); // sleep random amount
return RandomInteger('A', 'Z'); // return random character

}

Output
saga21:/usr/class/cs107/other/thread_examples>readerWriter
Writer: buffer[0] = M
 Reader: buffer[0] = M
Writer: buffer[1] = C
 Reader: buffer[1] = C
Writer: buffer[2] = C
 Reader: buffer[2] = C
Writer: buffer[3] = D
 Reader: buffer[3] = D
Writer: buffer[4] = T
 Reader: buffer[4] = T
Writer: buffer[0] = X
Writer: buffer[1] = U
 Reader: buffer[0] = X
 Reader: buffer[1] = U
Writer: buffer[2] = D
Writer: buffer[3] = Y
Writer: buffer[4] = C
 Reader: buffer[2] = D
Writer: buffer[0] = Q
 Reader: buffer[3] = Y
Writer: buffer[1] = I
 Reader: buffer[4] = C
 Reader: buffer[0] = Q
Writer: buffer[2] = D
Writer: buffer[3] = L
 Reader: buffer[1] = I
Writer: buffer[4] = W
 Reader: buffer[2] = D
Writer: buffer[0] = D

12

 Reader: buffer[3] = L
Writer: buffer[1] = M
 Reader: buffer[4] = W
Writer: buffer[2] = Y
 Reader: buffer[0] = D
Writer: buffer[3] = P
 Reader: buffer[1] = M
 Reader: buffer[2] = Y
 Reader: buffer[3] = P
Writer: buffer[4] = R
 Reader: buffer[4] = R
All done!

Another run won't necessary get the same output, but the reader should always list the
chars in the same order as the writer and there should never be more than 5 writes
before a read and vice versa (since we only have 5 buffers to use).

Making water
Another simple concurrency problem is simulating the process of hooking up hydrogen
atoms with oxygen atoms to form water molecules. Each atom is represented by a
separate thread, we will need to associate two hydrogen threads with one oxygen
thread to make a water molecule, then all three threads exit together.

We will use two general semaphores, one to count the number of hydrogen threads and
one for the number of oxygen threads. A hydrogen thread will wait to consume one of
the oxygen and then signal to raise the count of hydrogen to communicate to the
oxygen thread. An oxygen thread will wait for two hydrogen to come ready and then
signal the oxygen count twice to let them know oxygen is ready. This is an example of a
"rendezvous"—we are signaling a general semaphore to record the action of one thread
and another thread can wait on it to meet up with it.

/**
 * water.c
 * -------
 * A simple deadlock example. This version will quickly get stuck when all
 * the oxygen wait for hydrogen to get ready at the same time the hydrogen
 * is waiting for the oxygen to get ready. A simple change in order of
 * signal would solve this problem.
 */

#include "thread_107.h"
#define NUM_WATER 10

void main(int argc, char **argv)
{

int i;
bool verbose = (argc == 2 && (strcmp(argv[1], "-v") == 0));
Semaphore oxygenReady, hydrogenReady; // semaphores used as counters

InitThreadPackage(verbose);
oxygenReady = SemaphoreNew("Oxygen Ready", 0);
hydrogenReady = SemaphoreNew("Hydrogen Ready", 0);

13

for (i = 0; i < NUM_WATER; i++)
ThreadNew(“Oxygen”, Oxygen, 2, oxygenReady, hydrogenReady);

for (i = 0; i < 2 * NUM_WATER; i++)
ThreadNew(“Hydrogen”, Hydrogen, 2, oxygenReady, hydrogenReady);

RunAllThreads();

printf("All done!\n");
SemaphoreFree(oxygenReady);
SemaphoreFree(hydrogenReady);

}

static void Hydrogen(Semaphore oxygenReady, Semaphore hydrogenReady)
{

SemaphoreWait(oxygenReady);
SemaphoreSignal(hydrogenReady);

}

static void Oxygen(Semaphore oxygenReady, Semaphore hydrogenReady)
{

SemaphoreWait(hydrogenReady);
SemaphoreWait(hydrogenReady);
SemaphoreSignal(oxygenReady);
SemaphoreSignal(oxygenReady);
printf("Water made!\n");

}

Deadlock
In the above program, things will quickly grind to a halt as all threads start up and
immediately start waiting on one of the two counters, which all start as zero. Every
thread is then waiting for an action to be taken by another thread— we call this situation
"deadlock." In the water program, we can eliminate the problem by changing the order
for one of the elements. Somebody has to make the first move. If hydrogen first signals
hydrogen available and then waits on the oxygen counter, it will break the deadlock
because raising the hydrogen count allows the oxygen thread to get through acquiring
hydrogen to signal the oxygen needed by the hydrogen thread, which will allow both
the elements to move on.

In a simple case like this where the deadlock is immediately obvious and infinitely
reproducible, it is easy to detect and fix. However there are many more subtle cases
where the deadlock may happen only rarely and can be difficult to track down and
remove.

The water program is a good one to practice a little concurrent debugging on. Try
running it under gdb and when it gets stuck, interrupt the program and use the
debugging routines to print all threads and semaphores to get a picture of what is
happening during execution.

14

Dining Philosophers
Another classic concurrency problem concerns a group of philosophers seated about a
round table eating spaghetti. There are the same total number of forks as there are
philosophers and one fork is placed between every two philosophers—that puts a single
fork to the left and right of each philosopher. The philosophers run the traditional
think-eat loop. After he sits quietly thinking for a while, a philosopher gets hungry.
To eat, a philosopher grabs the fork to the left, grabs the fork to the right, eats for a time
using both forks, and then replaces the forks and goes back to thinking. (There's a
related problem, the Dining Programmers, where you have group of programmers
sitting around a round table eating sushi with one chopstick between every two
programmers.)

There is a possible deadlock condition if the philosophers are allowed to grab forks
freely. The deadlock occurs if no one is eating, and then all the philosophers grab the
fork to their left, and then look over and wait for the right fork.

Solution
One simple and safe solution is to restrict the number of philosophers allowed to even
try to eat at once. If you only allow (n-1) of the philosophers to try to eat, then you can
show that the deadlock situation cannot occur. This correctness comes at the cost of
allowing slightly less spaghetti throughput than without the restriction. The restrict-
competition-to-avoid-the-deadlock can be a staple technique for avoiding deadlock.
What is another way to avoid the deadlock? Hint: don't have all the philosophers follow
the exact same program.

/**
 * dining.c
 * --------
 * The classic Dining Philosophers example. Allow a group of dining
 * philosophers to eat at a round sharing the forks between each person.
 * Each person needs both forks to eat.
 */

#include "thread_107.h"
#include <stdio.h>

#define NUM_DINERS 5
#define EAT_TIMES 3

/* Macros to conveniently refer to forks to left and right of each person */

#define LEFT(philNum) (philNum)
#define RIGHT(philNum) (((philNum)+1) % NUM_DINERS)

/*
 * Our main is creates a semaphore for every fork in an unlocked state
 * (one philosopher can immediately acquire each fork) and sets up the
 * numEating semaphore to only allow N-1 philosophers to try and grab
 * their forks. Each philosopher runs its own thread. They should
 * finish after getting their fill of spaghetti. By running with the

15

 * -v flag, it will include the trace output from the thread library.
 */

void main(int argc, char **argv)
{
 int i;

char name[32];
bool verbose = (argc == 2 && (strcmp(argv[1], "-v") == 0));

 Semaphore fork[NUM_DINERS]; // semaphore to control access per fork
 Semaphore numEating; // to restrict contention for forks

InitThreadPackage(verbose);

for (i = 0; i < NUM_DINERS; i++) { // Create all fork semaphores
 sprintf(name, "Fork %d", i);

fork[i] = SemaphoreNew(name, 1); // all forks start available
}
numEating = SemaphoreNew(“Num Eating”, NUM_DINERS - 1);

for (i = 0; i < NUM_DINERS; i++) { // Create all philosopher threads
sprintf(name, "Philosopher %d", i);
ThreadNew(name, Philosopher, 3, numEating, fork[LEFT(i)], fork[RIGHT(i)]);

}

RunAllThreads();
printf("All done!\n");

SemaphoreFree(numEating);
for (i = 0; i < NUM_DINERS; i++) SemaphoreFree(fork[i]);

}

/**
 * Philosopher
 * -----------
 * This is the routine run in each of the philosopher threads. Each runs in
 * ean at-think loop where pondering for a while builds up a big hunger.
 */

static void Philosopher(Semaphore numEating, Semaphore leftFork,
 Semaphore rightFork)
{
 int i;

 for (i = 0; i < EAT_TIMES; i++) {
Think();
Eat(numEating, leftFork, rightFork);

 }
}

static void Think(void)
{
 printf("%s thinking!\n", ThreadName());
 RandomDelay(10000,50000); // "think" for random time
}

16

/**
 * We first wait on the availability of an opportunity to eat, and
 * only then do we attempt to grab our left & right forks and chow
 * some spaghetti. Notice that we let go of the locks in the reverse
 * order that we acquire them, so that we don't signal another
 * philosopher to eat until after we have put down both our forks.
 */

static void Eat(Semaphore numEating, Semaphore leftFork, Semaphore rightFork)
{

SemaphoreWait(numEating); // wait until can try to get forks
 SemaphoreWait(leftFork); // get left
 SemaphoreWait(rightFork); // get right

 printf("%s eating!\n", ThreadName());
 RandomDelay(10000,50000); // "eat" for random time

 SemaphoreSignal(leftFork); // let go
 SemaphoreSignal(rightFork);
 SemaphoreSignal(numEating);
}

Output
elaine24:/usr/class/cs107/other/thread_examples> dining
Philosopher 3 thinking!
Philosopher 4 thinking!
Philosopher 0 thinking!
Philosopher 1 thinking!
Philosopher 2 thinking!
Philosopher 2 eating!
Philosopher 0 eating!
Philosopher 0 thinking!
Philosopher 4 eating!
Philosopher 2 thinking!
Philosopher 4 thinking!
Philosopher 0 eating!
Philosopher 2 eating!
Philosopher 2 thinking!
Philosopher 0 thinking!
Philosopher 3 eating!
Philosopher 0 eating!
Philosopher 3 thinking!
Philosopher 2 eating!
Philosopher 4 eating!
Philosopher 4 thinking!
Philosopher 1 eating!
Philosopher 3 eating!
Philosopher 3 thinking!
Philosopher 1 thinking!
Philosopher 4 eating!
Philosopher 1 eating!
Philosopher 3 eating!
Philosopher 1 thinking!
Philosopher 1 eating!
All done!

